1. Theorell H, McKEE JS (Oct 1961). “Mechanism of action of liver alcohol dehydrogenase”. Nature 192 (4797): 47–50. doi:10.1038/192047a0. PMID 13920552.
  2. Cederbaum, A. (2012). Alcohol Metabolism. Clinical Liver Disease,16 (4), 667-685.
  3. Vopli, E., Lucidi, P., Criciani, G., Monacchia, F., Reboldi, G., Brunetti, P., Bolli, G.B., & De Feo, P. (1997). Nicotinamide counteracts alcohol-induced impairment of hepatic protein metabolism in humans. The Journal of Nutrition, 127 (11), 2199-2204.
  4. Holly Read Thomasson, Howard J. Edenberg, David W. Crabb, Xiao-Ling Mai, Ronald E. Jerome, Ting-Kai Li, Shiou-Ping Wang, T Yu-Tsai Lin,t Ru-Band Lut Shin-Jiun Yint. Alcohol and Aldehyde Dehydrogenase Genotypes and Alcoholism in Chinese Men. Am. J. Hum. Genet. 48:677-681, 1991
  5. David W. Crabb, Howard J. Edenberg, William F. Bosron, and Ting-Kai Li. Genotypes for Aldehyde Dehydrogenase Deficiency and Alcohol Sensitivity. The Inactive ALDH22 Allele Is Dominant. Departments of Medicine, Biochemistry, and Medical Genetics, Indiana University School of Medicine and Veterans Administration Medical Center, Indianapolis, Indiana 46223. Aldehyde Dehydrogenase Deficiency Genotypes PP 314-316.
  6. Howard J. Edenberg, Ph.D. The Genetics of Alcohol Metabolism. Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants. Alcohol Research & Health, Vol. 30, No. 1, 2007
  7. Wilkinson PK, Sedman AJ, Sakmar E, Kay DR, Wagner JG. Pharmacokinetics of ethanol after oral administration in the fasting state. Journal of Pharmacokinetics and Biopharmaceutics. 1977;5(3):207-224.
  8. Matsumoto H, Fukui Y. (2002) Pharmacokinetics of ethanol: A review of the methodology. Addiction Biology,7(1):5-14. doi:10.1080/135562101200100553
  9. Cederbaum AI. (2012). Alcohol Metabolism. Clinics in Liver Disease,16(4):667-685. doi:10.1016/j.cld.2012.08.002
  10. Ramchandani VA, Kwo PY, Li TK. (2001). Effect of food and food composition on alcohol elimination rates in healthy men and women. Journal of Clinical Pharmacology, 41(12):1345-1350.
  11. Baraona E, Abittan CS, Dohmen K, et al. (2001). Gender differences in pharmacokinetics of alcohol. Alcoholism: Clinical and Experimental Research, 25(4):502-507.
  12. Sullivan JB, Jr., Hauptman M, Bronstein AC. (1987). Lack of observable intoxication in humans with high plasma alcohol concentrations. Journal of Forensic Sciences, 32(6):1660-1665.
  13. Wilkinson PK, Sedman AJ, Sakmar E, Kay DR, Wagner JG. Pharmacokinetics of ethanol after oral administration in the fasting state. Journal of pharmacokinetics and biopharmaceutics. 1977;5(3):207-224.
  14. Matsumoto H, Fukui Y. Pharmacokinetics of ethanol: a review of the methodology. Addict Biol. Jan 2002;7(1):5-14. doi:10.1080/135562101200100553
  15. Cederbaum AI. Alcohol Metabolism. Clinics in liver disease. 2012;16(4):667-685. doi:10.1016/j.cld.2012.08.002
  16. Ramchandani VA, Kwo PY, Li TK. Effect of food and food composition on alcohol elimination rates in healthy men and women. J Clin Pharmacol. Dec 2001;41(12):1345-1350.
  17. Baraona E, Abittan CS, Dohmen K, et al. Gender differences in pharmacokinetics of alcohol. Alcohol Clin Exp Res. Apr 2001;25(4):502-507.
  18. Marx J, Walls R, Hockberger R. Rosen’s Emergency Medicine-Concepts and Clinical Practice. Elsevier Health Sciences; 2013.
  19. Sullivan JB, Jr., Hauptman M, Bronstein AC. Lack of observable intoxication in humans with high plasma alcohol concentrations. J Forensic Sci. Nov 1987;32(6):1660-1665.
  20. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. 2013 Dec 19;155(7):1624-38.
  21. Imai SI, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014 Apr 28. pii: S0962-8924(14)00063-4.
  22. Cerutti R, Pirinen E, Lamperti C, Marchet S, Sauve AA, Li W, Leoni V, Schon EA, Dantzer F, Auwerx J, Viscomi C, Zeviani M. NAD+-Dependent Activation of Sirt1 Corrects the Phenotype in a Mouse Model of Mitochondrial Disease. Cell Metab. 2014 May 7. pii: S1550-4131(14)00164-8.
  23. Khan NA, Auranen M, Paetau I, Pirinen E, Euro L, Forsström S, Pasila L, Velagapudi V, Carroll CJ, Auwerx J, Suomalainen A. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med. 2014 Apr 6.
  24. Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA, Auwerx J. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012 Jun 6;15(6):838-47.
  25. Sasaki Y, Araki T, Milbrandt J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci. 2006 Aug 16;26(33):8484-91.
  26. Goody MF, Kelly MW, Reynolds CJ, Khalil A, Crawford BD, Henry CA. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol. 2012;10(10):e1001409
  27. Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011 Oct 5;14(4):528-36.
  28. Lu SP, Kato M, Lin SJ. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. J Biol Chem. 2009 Jun 19;284(25):17110-9.
  29. Belenky P, Christensen KC, Gazzaniga F, Pletnev AA, Brenner C. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism. J Biol Chem. 2009 Jan 2;284(1):158-64.
  30. Belenky P, Racette FG, Bogan KL, McClure JM, Smith JS, Brenner C. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell. 2007 May 4;129(3):473-84.
  31. Tempel W, Rabeh WM, Bogan KL, Belenky P, Wojcik M, Seidle HF, Nedyalkova L, Yang T, Sauve AA, Park HW, Brenner C. Nicotinamide riboside kinase structures reveal new pathways to NAD+. PLoS Biol. 2007 Oct 2;5(10):e263.
  32. Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004 May 14;117(4):495-502.
  33. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo YS, Viswanathan M, Schoonjans K, Guarente L, Auwerx J. The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell. 2013 Jul 18;154(2):430-41.
  34. Cantó C, Auwerx J. NAD+ as a signaling molecule modulating metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:291-8.
  35. Mouchiroud L, Houtkooper RH, Auwerx J. NAD⁺ metabolism: a therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol. 2013 Jul-Aug;48(4):397-408.
  36. Imai SI, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014 Apr 28. pii: S0962-8924(14)00063-4
  37. Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115-30.
  38. Sauve AA. NAD+ and vitamin B3: from metabolism to therapies. J Pharmacol Exp Ther. 2008 Mar;324(3):883-93.
  39. Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007 Jan;32(1):12-9. Epub 2006 Dec 11
  40. Sanghani PC, Robinson H, Bosron WF, Hurley TD (September 2002). “Human glutathione-dependent formaldehyde dehydrogenase. Structures of apo, binary, and inhibitory ternary complexes”. Biochemistry 41 (35): 10778–86.
  41. Danielsson O, Jörnvall H (Oct 1992). “”Enzymogenesis”: classical liver alcohol dehydrogenase origin from the glutathione-dependent formaldehyde dehydrogenase line”. Proceedings of the National Academy of Sciences of the United States of America 89 (19): 9247–51. doi:10.1073/pnas.89.19.9247. PMC 50103. PMID 1409630.
  42. Persson B, Hedlund J, Jörnvall H (Dec 2008). “Medium- and short-chain dehydrogenase/reductase gene and protein families : the MDR superfamily”. Cellular and Molecular Life Sciences 65 (24): 3879–94. doi:10.1007/s00018-008-8587-z. PMC 2792335. PMID 19011751.
  43. Staab CA, Hellgren M, Höög JO (Dec 2008). “Medium- and short-chain dehydrogenase/reductase gene and protein families : Dual functions of alcohol dehydrogenase 3: implications with focus on formaldehyde dehydrogenase and S-nitrosoglutathione reductase activities”. Cellular and Molecular Life Sciences 65 (24): 3950–60. doi:10.1007/s00018-008-8592-2. PMID 19011746.
  44. Godoy L, Gonzàlez-Duarte R, Albalat R (2006). “S-Nitrosogluthathione reductase activity of amphioxus ADH3: insights into the nitric oxide metabolism”. International Journal of Biological Sciences 2 (3): 117–24. doi:10.7150/ijbs.2.117. PMC 1458435. PMID 16763671.
  45. Whitfield, John B. “ADH and ALDH genotypes in relation to alcohol metabolic rate and sensitivity” (PDF). Alcohol & Alcoholism.
  46. Peng Y, Shi H, Qi XB, Xiao CJ, Zhong H, Ma RL, Su B (2010). “The ADH1B Arg47His polymorphism in east Asian populations and expansion of rice domestication in history”. BMC Evolutionary Biology 10: 15. doi:10.1186/1471-2148-10-15. PMC 2823730. PMID 20089146.
  47. Eng, Mimi Y. (2007-01-01). Alcohol Research and Health. U.S. Government Printing Office. ISSN 1535-7414.
  48. Negelein E, Wulff HJ (1937). Biochem. Z. 293: 351.
  49. Jörnvall H, Harris JI (Apr 1970). “Horse liver alcohol dehydrogenase. On the primary structure of the ethanol-active isoenzyme”. European Journal of Biochemistry / FEBS 13 (3): 565–76. doi:10.1111/j.1432-1033.1970.tb00962.x. PMID 5462776.
  50. Brändén CI, Eklund H, Nordström B, Boiwe T, Söderlund G, Zeppezauer E, Ohlsson I, Akeson A (Aug 1973). “Structure of liver alcohol dehydrogenase at 2.9-angstrom resolution”. Proceedings of the National Academy of Sciences of the United States of America 70 (8): 2439–42. doi:10.1073/pnas.70.8.2439. PMC 433752. PMID 4365379.
  51. Hellgren M (2009). Enzymatic studies of alcohol dehydrogenase by a combination of in vitro and in silico methods, Ph.D. thesis (PDF). Stockholm, Sweden: Karolinska Institutet. p. 70. ISBN 978-91-7409-567-8.
  52. Sofer W, Martin PF (1987). “Analysis of alcohol dehydrogenase gene expression in Drosophila”. Annual Review of Genetics 21: 203–25. doi:10.1146/ PMID 3327463.
  53. Hammes-Schiffer S, Benkovic SJ (2006). “Relating protein motion to catalysis”. Annual Review of Biochemistry 75: 519–41. doi:10.1146/annurev.biochem.75.103004.142800. PMID 16756501.
  54. Brandt EG, Hellgren M, Brinck T, Bergman T, Edholm O (Feb 2009). “Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site”. Physical Chemistry Chemical Physics 11 (6): 975–83. doi:10.1039/b815482a. PMID 19177216.
  55. Sultatos LG, Pastino GM, Rosenfeld CA, Flynn EJ (Mar 2004). “Incorporation of the genetic control of alcohol dehydrogenase into a physiologically based pharmacokinetic model for ethanol in humans”. Toxicological Sciences 78 (1): 20–31. doi:10.1093/toxsci/kfh057. PMID 14718645.
  56. Farrés J, Moreno A, Crosas B, Peralba JM, Allali-Hassani A, Hjelmqvist L, Jörnvall H, Parés X (Sep 1994). “Alcohol dehydrogenase of class IV (sigma sigma-ADH) from human stomach. cDNA sequence and structure/function relationships”. European Journal of Biochemistry / FEBS 224 (2): 549–57. doi:10.1111/j.1432-1033.1994.00549.x. PMID 7925371.
  57. Kovacs B, Stöppler MC. “Alcohol and Nutrition”. MedicineNet, Inc. Archived from the original on 23 June 2011. Retrieved 2011-06-07.
  58. Duester G (Sep 2008). “Retinoic acid synthesis and signaling during early organogenesis”. Cell 134 (6): 921–31. doi:10.1016/j.cell.2008.09.002. PMC 2632951. PMID 18805086.
  59. Hellgren M, Strömberg P, Gallego O, Martras S, Farrés J, Persson B, Parés X, Höög JO (Feb 2007). “Alcohol dehydrogenase 2 is a major hepatic enzyme for human retinol metabolism”. Cellular and Molecular Life Sciences 64 (4): 498–505. doi:10.1007/s00018-007-6449-8. PMID 17279314.
  60. Parlesak A, Billinger MH, Bode C, Bode JC (2002). “Gastric alcohol dehydrogenase activity in man: influence of gender, age, alcohol consumption and smoking in a caucasian population”. Alcohol and Alcoholism 37 (4): 388–93. doi:10.1093/alcalc/37.4.388. PMID 12107043.
  61. Cox, Michael; Nelson, David R.; Lehninger, Albert L (2005). Lehninger Principles of Biochemistry. San Francisco: W. H. Freeman. p. 180. ISBN 0-7167-4339-6.
  62. Leskovac V, Trivić S, Pericin D (Dec 2002). “The three zinc-containing alcohol dehydrogenases from baker’s yeast, Saccharomyces cerevisiae”. FEMS Yeast Research 2 (4): 481–94. doi:10.1111/j.1567-1364.2002.tb00116.x. PMID 12702265.
  63. Coghlan A (23 December 2006). “Festive special: The brewer’s tale – life”. New Scientist. Archived from the original on 17 March 2009. Retrieved 2009-04-27.
  64. Chang C, Meyerowitz EM (Mar 1986). “Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene”. Proceedings of the National Academy of Sciences of the United States of America 83 (5): 1408–12. doi:10.1073/pnas.83.5.1408. PMC 323085. PMID 2937058.
  65. Chung HJ, Ferl RJ (Oct 1999). “Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment”. Plant Physiology 121 (2): 429–36. doi:10.1104/pp.121.2.429. PMC 59405. PMID 10517834.
  66. Thompson CE, Fernandes CL, de Souza ON, de Freitas LB, Salzano FM (May 2010). “Evaluation of the impact of functional diversification on Poaceae, Brassicaceae, Fabaceae, and Pinaceae alcohol dehydrogenase enzymes”. Journal of Molecular Modeling 16 (5): 919–28. doi:10.1007/s00894-009-0576-0. PMID 19834749.
  67. Järvinen P, Palmé A, Orlando Morales L, Lännenpää M, Keinänen M, Sopanen T, Lascoux M (Nov 2004). “Phylogenetic relationships of Betula species (Betulaceae) based on nuclear ADH and chloroplast matK sequences”. American Journal of Botany ( 91 (11): 1834–45. doi:10.3732/ajb.91.11.1834. PMID 21652331. Archived from the original on 26 May 2010.
  68. Williamson VM, Paquin CE (Sep 1987). “Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis”. Molecular & General Genetics 209 (2): 374–81. doi:10.1007/bf00329668. PMID 2823079.
  69. Conway T, Sewell GW, Osman YA, Ingram LO (Jun 1987). “Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis”. Journal of Bacteriology 169 (6): 2591–7. PMC 212129. PMID 3584063.
  70. Conway T, Ingram LO (Jul 1989). “Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae”. Journal of Bacteriology 171 (7): 3754–9. PMC 210121. PMID 2661535.
  71. Walter KA, Bennett GN, Papoutsakis ET (Nov 1992). “Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes”. Journal of Bacteriology 174 (22): 7149–58. PMC 207405. PMID 1385386.
  72. Kessler D, Leibrecht I, Knappe J (Apr 1991). “Pyruvate-formate-lyase-deactivase and acetyl-CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE”. FEBS Letters 281 (1-2): 59–63. doi:10.1016/0014-5793(91)80358-A. PMID 2015910.
  73. Truniger V, Boos W (Mar 1994). “Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydrogenase”. Journal of Bacteriology 176 (6): 1796–800. PMC 205274. PMID 8132480.
  74. de Vries GE, Arfman N, Terpstra P, Dijkhuizen L (Aug 1992). “Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene”. Journal of Bacteriology 174 (16): 5346–53. PMC 206372. PMID 1644761.
  75. Leuchs S, Greiner L (2011). “Alcohol dehydrogenase from Lactobacillus brevis: A versatile catalyst for enenatioselective reduction” (PDF). CABEQ: 267–281.
  76. Zucca P, Littarru M, Rescigno A, Sanjust E (May 2009). “Cofactor recycling for selective enzymatic biotransformation of cinnamaldehyde to cinnamyl alcohol”. Bioscience, Biotechnology, and Biochemistry 73 (5): 1224–6. doi:10.1271/bbb.90025. PMID 19420690.
  77. Moore CM, Minteer SD, Martin RS (Feb 2005). “Microchip-based ethanol/oxygen biofuel cell”. Lab on a Chip 5 (2): 218–25. doi:10.1039/b412719f. PMID 15672138.
  78. Racker E (1950). “Crystalline alcohol dehydrogenase from baker’s yeast”. J. Biol. Chem. 184 (1): 313–9. PMID 15443900.
  79. “Enzymatic Assay of Alcohol Dehydrogenase (EC”. Sigma Aldrich. Retrieved 13 July 2015.
  80. Sher KJ, Grekin ER, Williams NA (2005). “The development of alcohol use disorders”. Annual Review of Clinical Psychology 1: 493–523. doi:10.1146/annurev.clinpsy.1.102803.144107. PMID 17716097.
  81. Luo X, Kranzler HR, Zuo L, Wang S, Schork NJ, Gelernter J (Feb 2007). “Multiple ADH genes modulate risk for drug dependence in both African- and European-Americans”. Human Molecular Genetics 16 (4): 380–90. doi:10.1093/hmg/ddl460. PMC 1853246. PMID 17185388.
  82. National Drug Strategy Household Survey 2013 conducted by the Australian Government’s Institute of Health and Welfare.
  83. Alcohol use – National Drug Strategy Household Survey 2013 Key Findings
  84. Australian guidelines to reduce health risks from drinking alcohol – National Drug Strategy Household Survey 2013 Key Findings
  85. “Chinese people now drink more than British boozers” – The Telegraph UK, Html
  86. China drinks a surprising amount of alcohol. Washington Post.
  87. The spirit level. Economist.
  88. Trends in recorded alcohol consumption. Washington Post.
  89. Chinese drinkers consume more alcohol than the Brits and Australians, says study. South China Morning Post
  90. China – Alcohol Consumption: Trends and Patterns, World Health Organisation
  91. UK Office for National Statistics, Adult drinking habits in Great Britain: 2014
  92. Data obtained from the UK Office of National Statistics